
SMART
CITIZEN
TOOLKIT

D2.3

making-sense.eu

Page 2 of 43

DELIVERABLE

PROJECT ACRONYM GRANT AGREEMENT # PROJECT TITLE

Making Sense 688620 Making Sense

DELIVERABLE REFERENCE NUMBER AND TITLE

D2.3
Documentation on firmware to integrate sensors

Revision: v7.0

AUTHORS

Guillem Camprodon Victor Barberán Silvia Puglisi

(IAAC) (IAAC) (IAAC)

	 	 Project co-funded by the European Commision within the Call H2020
		 ICT2015 Research and Innovation action

DISSEMINATION LEVEL

✔ P Public

C Confidential, only for members of the consortium and the Commission Services

making-sense.eu

Page 3 of 43

REVISION HISTORY

REVISION DATE AUTHOR ORG... DESCRIPTION

v1.0 18-04-2016 Guillem Camprodon IAAC First Draft

v2.0 01-06-2016 Victor Barberán IAAC Technical reviewing

v3.0 15-06-2016 Silvia Puglisi
Victor Barberán

IAAC Technical reviewing

v4.0 20-06-2016 Guillem Camprodon IAAC Integration of contributions

v5.0 21-06-2016 Emma Pareschi IAAC Content review

v6.0 21-06-2016 Mara Balestrini IAAC Content editing

v7.0 21-06-2016 Gui Seiz IAAC Formatting & Design

STATEMENT OF ORIGINALITY

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of others

has been made through appropriate citation, quotation or both.

making-sense.eu

Page 4 of 43

INDEX
Introduction	 . 5

The Smart Citizen API . 6	

1	 Retrieving devices data . 7

	 1.1	 Trigger notifications . 8	

	 1.2	 Create a custom dashboard . 9

	 1.3	 Talk to the world . 10

	 1.4	 Analyzing data using spreadsheets . 13

2	 Publishing data using custom devices . 15

	 2.1	 Device blueprints . 15

	 2.2	 Post readings . 18

	 2.3	 Node.js library . 20	

	 2.4	 Authentication . 21

	 2.5	 Adding data from other platforms . 22

		 2.5.1	 Pulling data . 22

		 2.5.2	 Publishing offline . 24

		 2.5.3	 Making your own sensor . 25

The Smart Citizen Kit . 27

3	 Hardware details . 28

4	 Licenses	 . 30

5	 Power management . 31

6	 Adding new sensors .32

	 6.1	 Designing your own Smart Citizen Kit Sensor Board . 33

	 6.2	 Adding sensor (or an actuator) over the expansion port . 35

	 6.3	 Adding Groove bricks . 37

Conclusions	 . 42

making-sense.eu

Page 5 of 43

INTRODUCTION

Since 2012 the Smart Citizen project has aimed to develop tools to
support participatory sensing. The two main outcomes of the project

are the Smart Citizen Platform and the Smart Citizen Kit, both
designed following an open source approach.

This deliverable covers the possibilities that these two tools offer within the context of Making
Sense, which focuses on the co-creation of new sensing technologies, data sense-making
interfaces, and participation strategies.

The report is structured in two main sections. First, it describes the Smart Citizen platform
through its main gateway, the Smart Citizen API, with special focus on how we can publish
and retrieve data using different methods. The second section covers the Smart Citizen Kit
and provides details on how to use the current hardware with custom sensors.

Since most of the core technologies documented here are already available on the Smart
Citizen project documentation under the docs1 and developer2 sections on smartcitizen.me,
the document provides specific application examples. The aim is to describe the scenarios
where this tools can be used and document real examples that can inspire the communities
involved in the Making Sense pilots.

Note: This deliverable has its own dedicated Github repository3 containing all the tools
and examples explained below.

1	 Smart Citizen Kit documentation https://docs.smartcitizen.me/

2	 Smart Citizen API documentation https://developer.smartcitizen.me/

3	 Smart Citizen Toolkit repository https://github.com/fablabbcn/smartcitizen-toolkit

making-sense.eu

Page 6 of 43

THE SMART CITIZEN API
The Smart Citizen platform is built on top of the Smart Citizen

public API. This means that any operation performed by the current
platform website is available over the API, allowing anyone to built

new UIs or to integrate with other tools.

The following section describes how to use the API to retrieve and post sensors’ data to the
Smart Citizen Platform. The API can also be used to manage devices and users automatically,
a feature that although possibly interesting for specific pilot deployments, will not be covered
in this deliverable.

making-sense.eu

Page 7 of 43

1
RETRIEVING DEVICES’

DATA
Any user can access the API to retrieve latest or historical data about any
device on the platform, even when he does not own it. The API supports
HTTPS Rest4, Websockets5 for real time services and CSV for device
historical data.

The following use cases describe possible scenarios that a community might want to
experiment with as part of a Making Sense pilot: Trigger notifications, Custom dashboards,
Talk to the world and Data on spreadsheets. They focus on giving participants feedback
about the data produced by the sensors towards supporting participation engagement and to
help make sense of the data.

4	 The Smart Citizen API Documentation http://developer.smartcitizen.me/

5	 The Smart Citizen Real Time API http://developer.smartcitizen.me/#real-time

making-sense.eu

Page 8 of 43

1.1	 Trigger notifications
In many cases we might find the need to trigger a notification when a
certain event occurs on a Smart Citizen Kit. This might imply sending an
email to the user or publishing a tweet.

Node-RED6 is an open-source visual tool that enabled the wiring of hardware devices, APIs
and online services. The tool can be easily installed7 on any local computer or it can be used
directly on the Smart Citizen infrastructure8.

idea EXAMPLE

Notify the participants by twitter or email when battery is low

In this example we use the Node Red timmer and http request modules to query the Smart

Citizen end-point of the device we want to monitor.

Every time we receive a new response the API data payload in JSON is send to a function node, were a

small Javascript snippet check the battery level on the received requests.

In case the battery level is decreasing and is below 20% the module returns a new message explaining

the battery is low in a user friendly way. When the message is present the Trigger alert module post

a new message using the Twitter API. We can easily direct the requests to other modules as the Mail

module for emails, another HTTP module to trigger another REST API or the USB/Serial module to talk

to a physically connected Arduino UNO board.9

(Example continued in following page...)

	

6	 NodeRed http://nodered.org/

7	 NodeRed Installation http://nodered.org/docs/getting-started/installation

8	 Node Red testbed at Smart Citizen http://tools.smartcitizen.me/nodered

9	 Arduino is an open hardware and software microcontroller kit for building digital devices and interactive

objects that can sense and control physical devices https://www.arduino.cc/

making-sense.eu

Page 9 of 43

Fig 1 and 2. The Node Rest interface and tweet triggered after the low battery alert

The following example can be downloaded on the Smart Citizen Toolkit repository under
node-red and loaded on any Node Red instance.

 	

1.2	Create a custom dashboard

When working on deployments that involve multiple devices a community
might face the need to create their own page where the sensors’ data is
updated on real time.

This can help to look at data from different spots simultaneously and also to create a sense of
community among the devices’ owners. This feature can be easily built using Freeboards10, an
on-line11 free visual tool that supports the creation of dashboards.

10	 http://freeboard.io/

11	 https://freeboard.io/board/ldMIwl

making-sense.eu

Page 10 of 43

idea EXAMPLE

The city noise dashboard

The following example shows a dashboard where noise data from three Smart Citizen Kits
that are placed in the city of Manchester, are displayed in real-time. The dashboard is publicly
accessible on-line.

Fig 3. The Freeboard Noise in Manchester dashboard

The following example can be downloaded on the Smart Citizen Toolkit repository under
freeboard and loaded on Freeboards as a boilerplate example.

	

1.3		 Talk to the world
Due to their unobtrusive nature, sensor technologies like Smart Citizen
may easily blend in the background of users’ attention.

To bring the sensed data back to the surface and support sensemaking and awareness
processes, it is possible to use the SCKs’ data to trigger actions on the physical environment.

The Raspberry Pi platform, a series of credit card-sized low-cost (less than 30€) single-board
computers capable of running Linux, is the perfect companion for building this kind of tools. It
is also a suitable tool to engage people with coding, creating new internet of things (IoT) and
physical computing applications.

making-sense.eu

Page 11 of 43

Fig 4. A Raspberry Pi board running Linux for less than 30€

idea EXAMPLE

The sensor status lights

This example presents a small Python script that can turn two lights based on the real-time
temperature data from a remote sensor on the Smart Citizen platform.

We will implement a simple logic: When temperature on the remote sensor reaches 25 degrees
then turn the first light on. When temperature is below 25 degrees turn the first light off and
then turn the other light on.

We will use the Raspberry Pi GPIOs (General Purpose Input Outputs) to connect to LED’s that
represent the status of our sensor.

We will need to wire the two LED’s following the schematic below. Once we have the
Raspberry Pi running and connected to the internet we will need to save the Python script on
the desktop, open the Terminal app and run pi@raspberrypi ~ $ cd Desktop && sudo python
smartcitizen-led.py

making-sense.eu

Page 12 of 43

Smart Citizen Examples for the Raspberry Pi

http://smartcitizen.me

Trigger 2 LEDs depending on the temperature

For more information on the LEDs connection check: https://learn.sparkfun.com/tutorials/

raspberry-gpio

For more information on the SmartCitizen API check: http://developer.smartcitizen.me

#

import RPi.GPIO as GPIO

import json, requests, time

GPIO.setup(18, GPIO.OUT)

GPIO.setup(23, GPIO.OUT)

while True:

	 r = requests.get(‘https://api.smartcitizen.me/v0/devices/3292’)

	 data = json.loads(r.text)

	 for sensor in data[‘data’][‘sensors’]:

		 if sensor[‘description’] == ‘Temperature’: #CO, NO2...

			 print sensor[‘value’]

			 if sensor[‘value’] > 25:

				 print ‘LED ON’

				 GPIO.output(18, GPIO.HIGH)

				 GPIO.output(23, GPIO.LOW)

			 else:

				 print ‘LED OFF’

				 GPIO.output(18, GPIO.LOW)

				 GPIO.output(23, GPIO.HIGH)

	 time.sleep(15) #Update every 15 seconds

Fig 5. The Raspberry Pi wiring schematic

The above example can be downloaded on the Smart Citizen Toolkit repository under
Raspberry Pi.	

making-sense.eu

Page 13 of 43

1.4		 Analyzing data using					
		 spreadsheets
A way to introduce participants into examining the sense data is through
the use of spreadsheets software such as Open Office, Microsoft Excel or
Google Spreadsheets, to mention the most broadly used.

The Smart Citizen Platform supports the request of a CSV (Comma Separated Values) file
with the data of any device in the platform. Upon request, users receive an email with the
processed CSV within less than one minute. This can also be triggered over the API for users
to receive data over email periodically12.

The following example uses Google Spreadsheet13 since it is free and has multiuser support,
allowing participants to add and share comments on data. For CSV containing more than
5000 cells we suggest using Google Fusion Tables14 instead, also available within Google Docs
suite.

Idea EXAMPLE

Looking at data using Google Spreadsheets

Participants can upload their CSV files by simply using the File/Import option in Google
Spreadsheets and no special settings are required.

People can then apply standard mathematical operations into the data (e.g. averages) as well
as profit from the commenting tools to add annotations and mention other participants.

12	 API Request for CSV files http://developer.smartcitizen.me/#csv-archive-of-readings

13	 Google Spreadsheets https://www.google.com/sheets/about/

14	 Google Fusion Tables https://support.google.com/fusiontables/answer/2571232

making-sense.eu

Page 14 of 43

Fig 5, 6, 7 and 8. The download data as CSV option on the Smart Citizen Platform and the later usage in

Google Spreadsheets

Fig 5 Fig 6

Fig 8Fig 7

making-sense.eu

Page 15 of 43

2
PUBLISHING DATA

USING CUSTOM
DEVICES

The Smart Citizen Platform supports data from any sensor that has a
numerical digital output.

The current Platform supports data ingestion over the same API, which has been already
described in a previous section. MQTT15 support is currently under tests and will be finalised
during the upcoming months as part of the release of the Smart Citizen Kit 1.5 version.

2.1		 Device blueprints
The Smart Citizen API supports other devices to publish data to the
platform by previously agreeing with the Smart Citizen terms and
conditions.

For each device type that we intend to add, we would need to create a device blueprint. A
device blueprint defines the sensors and the metrics that your devices will have. This will
include the hardware details of your sensors and the kind of data that will be published to
the platform. Custom calibration formulas to be applied to the data when processed in the
platform can be also added.

Once a device blueprint is added to the platform, any user can create as many devices as
he likes and publish data to them following the standard Smart Citizen API. It is important to
note that Device Blueprint currently cannot be created by users and should be requested by
contacting support@smartcitizen.me.

15	 MQTT is a machine-to-machine connectivity protocol for constrained devices http://mqtt.org/

making-sense.eu

Page 16 of 43

The minimal Device Blueprint includes all the necessary data that a user might provide in
order to create a Kit16. It is composed of Components17 and those can reuse existing Sensors18
and Measurements19 definitions. Sensors define the hardware or software component that
records the data. Measurements are descriptions of what sensors are recording.

Blueprints can be shared across many devices or can be tailored per device in order to provide
dedicated calibration formulas per individual sensor. This is achieved with the Components
binding.

The following example shows a basic Device Blueprint in JSON. This is the minimum of
information that a blueprint needs:

Idea EXAMPLE

{

	 “name”: “The Frog”,

“description”: “Custom Arduino Humidity Sensor”,

	 “slug”: “ms:0,5”,

	 “components”: [{

		 “map”: “hum”,

		 “equation”: “(125.0 / 65536.0 * x) + 7”,

		 “sensor”: {

			 “name”: “HPP828E031”,

			 “description”: “Humidity”,

			 “unit”: “%”,

			 “measurement”: {

				 “name”: “relative humidity”,

				 “description”: “Relative humidity is a measure...”

			 }

		 }

	 }]

}

16	 Kits documentation http://developer.smartcitizen.me/#kits

17	 Components documentation http://developer.smartcitizen.me/#components

18	 Sensors documentation http://developer.smartcitizen.me/#sensors

19	 Measurements documentation http://developer.smartcitizen.me/#measurements

making-sense.eu

Page 17 of 43

The following examples expand the previous Device Blueprint with the complete data model:

Idea EXAMPLE

{

	 “id”: 10,

	 “uuid”: “056e452d-41c4-436d-a640-2157a278037d”,

	 “slug”: “ms:0,5”,

	 “name”: “The Frog”,

	 “description”: “Custom Arduino Humidity Sensor”,

	 “created_at”: “2016-06-18T16:25:02Z”,

	 “updated_at”: “2016-06-18T16:25:02Z”,

	 “components”: [{

		 “id”: 35,

		 “uuid”: “22da9377-5151-4547-a71b-6fd8958e1330”,

		 “equation”: “(125.0 / 65536.0 * x) + 7”,

		 “map”: “hum”,

		 “sensor”: {

			 “id”: 13,

			 “uuid”: “1c19ae8f-b995-460f-87a3-a9d0c140abfb”,

			 “parent_id”: 19,

			 “name”: “HPP828E031”,

			 “description”: “Humidity”,

			 “unit”: “%”,

			 “created_at”: “2015-02-02T18:24:30Z”,

			 “updated_at”: “2015-07-05T19:54:54Z”,

			 “measurement”: {

				 “id”: 2,

				 “uuid”: “9cbbd396-5bd3-44be-adc0-7ffba778072d”,

				 “name”: “relative humidity”,

				 “description”: “Relative humidity is a measure of the amount of

moisture in the air relative to the total amount of moisture the air can hold. For instance,

if the relative humidity was 50%, then the air is only half saturated with moisture.”

			 }

		 }

	 }]

}

making-sense.eu

Page 18 of 43

2.2		 Post readings

Posting sensor data is done using the defaults Smart Citizen REST API as a simple POST
operation as Device Post Readings20:

	 POST https://api.smartcitizen.me/v0/devices/:device_id/readings

PARAMETER EXAMPLE REQUIRED? DESCRIPTION

REQUEST PARAMETERS

data array ✔ The data payload

DATA PARAMETERS

recorded_at

datetime

2015-07-20

00:00:00 UTC

✔
The time when the reading

took place

sensors array
The sensors objects

SENSOR PARAMETERS

id integer 12 ✔ The id

id string temp Instead of the id we can

use a hash as defined on

the Blueprint

value float 22 ✔ The value of the sensor

(can be an integer or float)

20	 Documentation for device post readings http://developer.smartcitizen.me/#post-readings

making-sense.eu

Page 19 of 43

Example request

POST
https://api.smartcitizen.me/v0/devices/1816/readings?access_
token=XEGwy6BsEybbz3BjYxemxfTQcHjAAJ1s3vJkemhdQ45Cq4hvBM7pNlrY48SUjCfai

 {
 “data”: [{
 “recorded_at”: “2016-06-08 10:30:00”,
 “sensors”: [{
 “id”: “temp”,
 “value”: 21
 }]
 }]
 }

Fig 9. The Smart Citizen API documentation

Extended documentation can be found on the on-line Developers documentation.

making-sense.eu

Page 20 of 43

2.3		 Node.js library

Due to the widespread use of Javascript to develop interfaces and node.
js to develop network services, we provide a simple library in order to
simplify how to push data to the platform as a standard NPM21 package.

On any shell running node.js and npm, the module can be installed like

$ npm install smartcitizen

Here is a simple data post using the module

var SmartCitizen = require(‘smartcitizen’)

var smartcitizen = new SmartCitizen({
 id: 8909, // Your device id
 token: ‘F1XZt67EG9ya0E5k6yfHhgVQsXl4SbsDcE4ZBc4VMGtsTrOeBri7VjwcqZ0NWqDVE’ //
Your token
});

smartcitizen.push({
 recorded_at: new Date(),
 sensors: [{
 id: ‘noise’,
 value: 59
 }]
})

21	 Smart Citizen NPM package page https://www.npmjs.com/package/smartcitizen.

making-sense.eu

Page 21 of 43

2.4		 Authentication

Authentication when publishing data is currently achieved via a unique
private user key. Users can request it on the user profile page at:

https://smartcitizen.me/profile/users

Fig 10. The Smart Citizen Platform user profile with the user Keys

Support for oAuth22 application key management is already planned and a beta version can be
tested here https://id.smartcitizen.me/oauth/applications.

22	 Authentication documentation http://developer.smartcitizen.me/#authentication

making-sense.eu

Page 22 of 43

2.5		 Adding data from other platforms
There are many scenarios where we can not use the Smart Citizen Kit
alone. In many cases we might found other platforms have data we might
like to integrate or other sensors we can buy from other manufacturers or
develop in our community.

The following use cases: Pulling data, Publishing off-line data and Making our own sensor
cover possible scenarios that we found a community might encounter while working on a
Making Sense pilot. They are focused on expanding the Smart Citizen Tools by connecting
with other existing tools and sensing methodologies.

2.5.1	 Pulling data

Some users might want to use data that are already available via other
open data platforms, or they might want to integrate an industrial sensor
that has its own proprietary data platform.

However many of those platforms have some sort of Webservice or API that are used to
retrieve their own data. The use of multiple data sets and platforms can be specially useful
to cross reference data. To provide an example, in the next section we show how to integrate
data from the Barcelona Sentilo Platform, an official data platform by the city council, with
Smart Citizen.

Idea EXAMPLE

Integrating data from the Barcelona Sentilo Platform

We built a simple Node.js sketch to request data at every minute from the Barcelona Sentilo
Platform API and publish it into the Smart Citizen platform using the Smart Citizen NPM
module.

We run the script into our lab Raspberry Pi so it runs continuously and remotely. This kind of
integration can be also easily done using the Node Red tool described above.

making-sense.eu

Page 23 of 43

The script below shows how minimal this kind of integration can be. The source code is
available within the Smart Citizen Toolkit repository.

// Node.js script for connecting with other APIs

var SmartCitizen = require(‘smartcitizen’), request = require(‘request’), moment =

require(‘moment’);

var smartcitizen = new SmartCitizen({

 id: 3508,

 token: ‘XEGwy6BsEybbz3BjYxemxfTQcHjAAJ1s3vJkemhdQ45Cq4hvBM7pNlrY48SUjCfai’

});

setInterval(function() {

 request.get({

 json: true,

 url: ‘http://connecta.bcn.cat/connecta-catalog-web/admin/sensor/lastOb/CESVA.

TA120-T240427.TA120-T240427-N’

 }, function(err, httpResponse, body) {

 if (body && body.value && body.timestamp) {

 smartcitizen.push({

 recorded_at: moment(body.timestamp, ‘DD/MM/YYYYThh:mm:ss’),

 sensors: [{

 id: ‘ta120noise’,

 value: Number(body.value)

 }]

 })

 }

 });

}, 60000);

Fig 11 and 12. The Barcelona Sentilo Platform and the sensor once integrated into Smart Citizen23

23	 The Sentil sensor on the Smart Citizen Platform https://smartcitizen.me/kits/3508

making-sense.eu

Page 24 of 43

2.5.2	 Publishing offline

In certain situations, users might want to employ data capturing tools
that can’t connect to the internet.

They might be deployed in places where there is no internet connection or they might be
completely analog sensors, such as Diffusion Tubes often used to measure air quality.

Nevertheless, the user might hope to visualize the collected data via the Smart Citizen
platform. A way to do this is by using Google spreadsheets, which we explain in the next
section.

Idea EXAMPLE

Automated data upload using Google spreadsheets

We built a simple Javascript sketch that supports the integration of data from a Google
Spreadsheet into the Smart Citizen Platform.

This means that participant can easily entry the analog data on the spreadsheet convenient
standard and these data will be automatically added onto the platform device. Each tab on
the spreadsheet defines the identifier of each device and users can add as many columns as
sensors the devices can support. This service can be enabled for specific pilots. It can also be
deployed locally as a simple Node Js app on any Mac or Linux computer. The whole source is
available within the Smart Citizen Toolkit repository.

Fig 13 and 14 The Google Spreadsheet syncing data in real time to Smart Citizen24

24	 https://smartcitizen.me/kits/3502

making-sense.eu

Page 25 of 43

2.5.3	 Making your own sensor

In the process of exploring new ways to sense the environment,
communities might find that they would like to appropriate Smart Citizen
Kits to prototype their own sensors.

However, it is important to know that for any embedded device to be able to publish
directly into the Smart Citizen API it needs to have: internet connectivity and http and ssl
support. This includes well known platforms as the new Arduino MKR100025 (by using the
WiFi101::ConnectSSL() class)26or the Rasperry Pi.

For devices with just USB support, as the Arduino UNO, Raspberry Pi can be turned into an
USB/Serial bridge using tools as Node Red.

Idea EXAMPLE

Measuring street activity using the Raspberry Pi and Processing.org

The cost of cameras is permanently dropping as their computing power increases. This
creates new opportunities to develop sensing tools based on Computer Vision strategies, a
type of system that was until recently only possible for specialized industries.

Using accessible tools such as Processing and low cost computers like Raspberry Pi we can
now build and test novel custom sensors.

The following example uses a Raspberry Pi with the Pi Cam module in order to monitor
general activity on a street by performing simple computer vision operations. Data is then
published to the Smart Citizen API using the Smart Citizen class for Processing27.

25	 Arduino MKR 1000 https://www.arduino.cc/en/Main/ArduinoMKR1000

26	 Arduino WiFI101 Library with HTTPS (SSL) support https://www.arduino.cc/en/Reference/

WiFi101ClientConnectSSL

27	 Processing is a software sketchbook and a language for learning how to code https://processing.org/

making-sense.eu

Page 26 of 43

Note this is not aimed at providing a ready to use solution yet showing the potential of the
technology. A detailed description of the source is available within the Smart Citizen Toolkit
repository.

Fig 15 The time-lapse Pi Camera project by Sparkfun28

Fig 16 and 17 The Processing sketch pushing data to Smart Citizen29

28	 Enginursday: Time-lapse with the Raspberry Pi Pt. 2 https://www.sparkfun.com/news/1396

29	 https://smartcitizen.me/kits/3509

making-sense.eu

Page 27 of 43

THE SMART CITIZEN KIT
The Smart Citizen Kit (SCK) is a piece of hardware comprised of a
sensors and a data-processing board, a battery and an enclosure.

The first board carries sensors that measure air composition (CO and NO2), temperature,
humidity, light intensity and sound levels. Once set up, the device will stream data measured
by the sensors over Wi-Fi using the FCC-certified, wireless module on the data-processing
board. The device’s low power consumption allows for it to be deployed outdoor, e.g. on
balconies and windowsills.

Power to the device can be provided by a solar panel and/or a battery. On remote areas data
can be also stored on a micro SD card. The latest version can also store up to 1000 reading
and post them back when a Wi-Fi network is found.

Fig 18 The Smart Citizen Kit 1.1 with the 3D Printed enclosure

making-sense.eu

Page 28 of 43

3
HARDWARE DETAILS

SMART CITIZEN KIT SCK 1.0
(GOTEO BOARD)

SCK 1.1
(KICKSTARTER BOARD)

SCK 1.5
(UPCOMING!)

Public release 04/2013 02/2014 09/2016

DATA BOARD

MCU ATMEGA32U4 (AVR 8-bits) ATMEGA32U4 (AVR 8-bits) SAMD21 (ARM M0+ 32-bits)

CLOCK 16Mhz 8Mhz 32Mhz

FLASH 32KB 32KB 256KB

RAM 2.5KB 2.5KB 32KB

WIFI Microchip RN-131 (FCC) Microchip RN-131 (FCC) Espressif ESP8266-
12E (FCC)

OTHER BUILT-IN
PERIPHERALS

Micro SD CARD, RTC (Real TIme Clock), PV + USB LiPo
Battery Charger, Add On connector

Micro SD CARD, RTC (Real
TIme Clock), PV + USB
LiPo Battery Charger,
Compass+Accelerometer,
Groove Add On connector,
RGB LED

FIRMWARE Repository Repository Repository

DESIGN FILES v1.01 v1.1 v1.5

AMBIENT BOARD

LIGHT PVD-P8001 BH1730FVC BH1730FVC

Type LDR Analog Light Sensor Digital Ambient Light Sensor

Units % Lux

Datasheet PDV-P8001.pdf BH-1730FCV.pdf

Performance 0.008 - 65535 lx (+/- 15%) **

Firmware SCKAmbient::getLight(); Under development

Temp DHT22 HPP828E031 (SHT21) SHT21

Type Digital Temperature and Relative Humidity Sensor

Units ºC ºC ºC

Datasheet DHT22.pdf HTU-21D.pdf SHT21.pdf

Firmware SCKAmbient::getDHT22();S
CKAmbient::getHumidity();

SCKAmbient::getSHT21();
SCKAmbient::getTemperat
ure();

Under development

Performance Linearity R²>0.94 * Under tests

https://github.com/fablabbcn/Smart-Citizen-Kit
https://github.com/fablabbcn/Smart-Citizen-Kit
https://github.com/fablabbcn/Smart-Citizen-Kit-1.5
https://github.com/fablabbcn/Smart-Citizen-Kit/tree/master/hardware/Goteo/v1.01
https://github.com/fablabbcn/Smart-Citizen-Kit/tree/master/hardware/Kickstarter
https://github.com/fablabbcn/Smart-Citizen-Kit-1.5/tree/master/hardware/
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/PDV-P8001.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/BH-1730FCV.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/DHT22.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/HTU-21D.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity_Sensors/Sensirion_Humidity_Sensors_SHT21_Datasheet_V4.pdf

making-sense.eu

Page 29 of 43

HUMIDITY DHT22 HPP828E031 (SHT21) SHT21

Type Digital Temperature and Relative Humidity Sensor

Units % Rel

Datasheet DHT22.pdf HTU-21D.pdf SHT21.pdf

Firmware SCKAmbient::getDHT22();S
CKAmbient::getHumidity();

SCKAmbient::getSHT21();SC
KAmbient::getHumidity();

Under development

Performance Linearity R²>0.97 * Under tests

NOISE POM-3044P-R POM-3044P-R SPU0414HR5H

Type Electret microphone with envelop follower sound
pressure sensor

New MEMS microphone
with envelop follower sound
pressure sensor

Units dB

Datasheet POM-3044P-R.pdf SPU0414HR5H.pdf

Firmware SCKAmbient::getNOise(); Under development

*Performance Range 50dB - 110dB (+/-
15%) **

Under tests

CO MICS-5525 MiCS-4514

Type MOS CO gas sensor MOS CO and NO² gas sensor

Units kOhm (ppm) kOhm (ppm)

Datasheet MICS-5525_CO.pdf MiCS-4514_CO_NO2.pdf

Firmware SCKAmbient::getMICS(); SCKAmbient::getMICS(); Under development

Performance Linearity 0.45 < R² < 0.82 * Under tests

NO² MICS-2710 MiCS-4514

Type MOS NO² gas sensor MOS CO and NO² gas sensor

Units kOhm (ppm) kOhm (ppm)

Datasheet MICS-5525_CO.pdf MiCS-4514_CO_NO2.pdf

Firmware SCKAmbient::getMICS(); SCKAmbient::getMICS(); Under development

Performance Linearity R²<0.0 * Under tests

* South Coast AQMD The correlation coefficient (R²) is a statistical parameter indicating how well the

performance of each sensor compares to that of a Federal Reference or Federal Equivalent Method (FRM

and FEM, respectively) instrument. An R² approaching the value of 1 reflects a near perfect agreement,

whereas a value of 0 indicates a complete lack of correlation

** Internal Smart Citizen Team WIP Evaluation Tests

For more information visit http://docs.smartcitizen.me

https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/DHT22.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/HTU-21D.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/Humidity_Sensors/Sensirion_Humidity_Sensors_SHT21_Datasheet_V4.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/MICS-5525_CO.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/MiCS-4514_CO_NO2.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/MICS-5525_CO.pdf
https://github.com/fablabbcn/Smart-Citizen-Kit/wiki/Datasheets/MiCS-4514_CO_NO2.pdf

making-sense.eu

Page 30 of 43

4
LICENSES

Licenses and Intellectual Property are always an important topic
when expanding an existing platform.

The open source nature of the Smart Citizen Kit provides a robust framework for this work
since the entire hardware structure remains under a Creative Commons License (Attribution-
nonCommercial-ShareAlike) and the firmware under a GNU General Public License v3.

The firmware license was specifically chosen in order to revert back to the community any
modifications or expansions done by other parties. The license requires that developers make
new firmware available along with any hardware add-on.

Fig 19 The Smart Citizen Kit 1.5

making-sense.eu

Page 31 of 43

5
POWER MANAGEMENT

The Smart Citizen can operate on batteries and even
using a PV panel.

Even if the hardware design is particularly optimized for low power consumption: we use an
ultra low power processor30 together with low consumption sensors designed for the mobile
industry, we must place attention to the power consumption when designing a sensing
strategy or when we add new sensors.

There are two critically demanding functionalities: publishing data to the online platform
and reading the CO NO2 sensor. This sensor needs to needs to warm up for a long time and
consumes close to 60mA seriously affecting the overall battery life.

Smart Citizen Kit 1.1
Power consumption can be controlled by using the online configuration tool to adjust the
upload and the sensors reading time in a user friendly UI. We can also perform advance
adjustment by editing the Firmware configuration.h SENSOR READINGS - Defaults section in
Arduino to change the sensors reading modes.

Smart Citizen 1.5
Sensor can be enabled and disabled by users on the platform, the reading interval can also
be set there. The interface is currently under design to support the upcoming Making Sense
pilots. This will allow to quickly disable sensor we do not plan to use on a pilot in favour of the
battery life.

The standard battery life publishing every minute with all the sensors enabled is 24h, by
decreasing the publishing time we can bring it up to 30h. Disabling the CO NO2 sensor we
can extend the battery to more than 2 days while publishing every minute or up to a week by
reducing the publishing time every hour31.

30	 The Smart Citizen Kit 1.1 uses a low-power Atmel 8-bit AVR RISC microntroller and version 1.5 uses an

Atmel SAM based on the ARM® Cortex®-M0+, the most energy-efficient ARM processor available.

31	 Data on the report is based on simulations with a 2000mA battery for the Smart Citizen Kit 1.1. A complete

report about the Smart Citizen is under development and will be release in https://docs.smartcitizen.me

making-sense.eu

Page 32 of 43

6
ADDING NEW SENSORS

The Smart Citizen Kit was originally designed to be a modular piece
of hardware and software.

However current limitations on the SCK 1.1 processor limited the modularity of the firmware
design. Up to the present day this limitations have not stopped 59 people from forking and
changing the firmware repository in Github32.

The new Smart Citizen Kit 1.5, which will be use in Making Sense by late September 2016, has
an expanded processor with close to 8 times the firmware space and 16 times more runtime
memory. This allows the firmware to be much more modular, therefore simplifying the task of
integrating new sensors.

Since the firmware for the Smart Citizen Kit 1.5 is currently under development, dedicated
examples and documentation will be published in the upcoming months. At the time we
provide the repository where the development process can be followed33.

32	 The Smart Citizen Kit 1.0 and 1.1 firmware https://github.com/fablabbcn/Smart-Citizen-Kit

33	 The Smart Citizen Kit 1.5 Repository https://github.com/fablabbcn/Smart-Citizen-Kit-1.

making-sense.eu

Page 33 of 43

6.1 	 Designing your own Smart 			
		 Citizen Kit Sensor Board

The Smart Citizen Kit is comprised of two stacked PCBs, a bottom one
dedicated to data processing and communications, and a top one
dedicated to the sensors.

The connector between the data board and the sensors board has a standard connector in
order to provide power, analog and digital communications (ADC, GPIO, I2C, VCC). Currently a
single sensor board is available: the Ambient Board34.

Anyone can take the PCB design files35 in Eagle and develop a compatible board. This
implies also writing the firmware library to support the sensors taking Smart Citizen Ambient.
h36 library as a reference. This is a good option in the case that a user wants a completely
different set of sensors, while keeping a small form factor, and plans to make more than a few
units.

34	 Check the Hardware specifications on the section above on the Ambient board sensors specifications

35	 The Smart Citizen Ambient Board design files https://github.com/fablabbcn/Smart-Citizen-Kit/tree/

master/hardware/Kickstarter/v1.1b/Ambient_Board_v1.1b

36	 The Ambient.h library is part of the Smart Citizen firmware an is dedicated to sensor management https://

github.com/fablabbcn/Smart-Citizen-Kit/blob/master/sck_beta_v0_9/SCKAmbient.h

making-sense.eu

Page 34 of 43

The diagrams below define the connection sensor boards pin-out for the different Smart
Citizen Kits.

SCK 1.0 + SCK 1.1 SCK 1.5

GND GND GND GND

IO3 (10) IO2 (9) IO3 (10) IO2 (9)

IO1 (13) IO0 (5) IO1 (13) IO0 (5)

SCL SDA SCL SDA

S5 (A1) S4 (A0) S5 (A1) S4 (A0)

S3 (A3) S2 (A2) S3 (A3) S2 (A2)

S1 (A5) S0 (A4) S1 (A5) S0 (A4)

VBAT VBAT VCC VCC

Fig 20 The Smart Citizen Kit Ambient Board and Data Board with their connectors

making-sense.eu

Page 35 of 43

6.2 	 Adding sensor (or an actuator) 		
		 over the expansion port
The Smart Citizen Kit has a built-in expansion port, the Add-on port. This was designed to
support I2C sensors or even a slave Arduino board. It can also support Dallas 1-Wire and
WS1228. By adding extra accessories we can virtually integrate any sensor as ADC and GPIOs
drivers are commonly available as described below.

idea EXAMPLE

Integrating sensors to the SCK 1.1: The OSBH Smart Citizen Kit

We add two waterproof temperature sensors together with the Ambient Board sensors to
measure the temperature inside the beehive.

Since the beehive is located in a remote area we will set the Smart Citizen Kit 1.1 to log on the
internal SD Card.

Fig 21 The Smart Citizen Kit expanded for the Open Source Beehives team being set on a Beehive at the

Green Fab Lab

1.	 We integrated two Waterproof Digital Temperature sensor by Maxim, the DS18B20. These are

Dallas 1-Wire sensors with a unique ID assigned by the manufacturer.

2.	 We used the expansion port on top of the SCK 1.1 Sensor Board to connect the 2 sensors.

making-sense.eu

Page 36 of 43

The expansion port is designed to expand the sensor board by adding new sensors via
the common I2C standard. However other protocols are supported via software as on the
following case where we use the Dallas 1-Wire protocol, found in many temperature and
humidity sensors. The pins have the following configuration:

PIN PORT FUNCTION

1 GND Ground

2 SCL I2C (by software: 1-WIRE / WS2812)

3 SDA I2C (by software: 1-WIRE / WS2812)

4 VBAT Battery Raw Voltage

5 VCC 3.3V Stable 3.3V Max 500mA

3.	 The SCK 1.1 firmware needs to be changed in order to support the sensor.

	 i.	 We integrate the Adafruit Library for the WS2812

	 ii.	 The complete firmware implementation is available here on the SCK 1.1 Repository37

	 iii.	 In the following example we can see how we momentarily disable the I2C (Wire) bus 	

		 in order to support other protocols as the Dallas 1-Wire of the WS2812 sensor.

#include <OneWire.h>

#include <DallasTemperature.h>

 uint16_t sckGetExtTemp(){

 Wire.end(); // Disable I2C bus on the PIN

 delay(100); // Wait for stability

 extTemperatures.begin(); // Start the WS2812 sensor.

 extTemperatures.getAddress(extTemperatures1, 0); Get the WS2812 address

 extTemperatures.requestTemperatures(); // Send WS2812 temp

 float extTemp = extTemperatures.getTempC(extTemperatures1); // Store it

 #if debuggSCK

 Serial.print(“DS18B20 (Ext Sensor): “);

 Serial.print(extTemp);

 Serial.println(“ C”);

 #endif

 delay(100); // Wait for stability

 Wire.begin(); // Enable the I2C bus on the PIN

 return (int) extTemp*100; // Return

 }

37	 The Smart Citizen Kit OSBH Firmware branch https://github.com/fablabbcn/Smart-Citizen-Kit/tree/

OSBH

making-sense.eu

Page 37 of 43

 	 4.	 Since the device is storing data onto the internal SD Card no changes are 		

		 required on the platform.

6.3	 Adding Groove bricks
The new Smart Citizen Kit 1.5 comprises a built in Seedstudio Grove38 I2C
connector as the standard Add-on port.

This means that we can use off-the-shelf sensors from the extensive Groove open hardware
sensor library, removing the need to build our own sensor add-ons from scratch.

Fig 22 Some of the Seeed Studio Grove sensors and actuators

 Seeedstudio Grove sensors natively compatible include:

38	 The Seedstudio Grove family documention http://www.seeedstudio.com/wiki/Grove_System

making-sense.eu

Page 38 of 43

1. Grove - I2C ADC:
 A 12-bits high precision Digital to Analog converter

5. Grove - OLED Display 0.96”:
A color display for visualizing data and alerts

2. Grove - 3-Axis Digital Accelerometer:
A digital accelerometer

6. Grove - Motor Driver:
For controlling motor actuators

3. Grove - 6-Axis Accelerometer Compass:
A digital accelerometer with compass

7. Grove - Color Sensor:
For detecting materials surface colors

4. Grove - Chainable RGB LED:
A chainable digital RGB led for status notification

8. Grove - I2C Hub:
A hub for connecting multiple Groove I2C ADC modules

By using the Groover - I2C ADC we use the following list of sensors. Using the the Grove - I2C
Hub and by changing the Grove I2C ADC address up to 9 sensors can be added.

1. Grove - Water Sensor 15. Grove - Light Sensor

2. Grove - Magnetic Switch 16. Grove - Temperature and Humidity Sensor

3.Grove - Alcohol Sensor 17. Grove - Barometer Sensor

4. Grove - Grove - PH Sensor 18. Grove - Dust Sensor

5. Grove - Differential Amplifier 19. Grove - Air quality

6. Grove - Electricity Sensor 20. Grove - Gas Sensor

7. Grove - Sound Sensor 21. Grove - Temperature Sensor

8. Grove - IR Distance Interrupt 22. Grove - Air Quality Sensor

9. Grove - Tilt Switch 23. Grove - Temperature and Humidity Sensor Pro

10. Grove - Encoder 24. Grove - Gas Sensor(O₂)

11. Grove - Moisture Sensor 25. Grove - Temp&Humi Sensor(SHT31)

12. Grove - PIR Motion Sensor 26. Grove - Barometer Sensor(BME280)

13. Grove - Infrared Reflective Sensor 27. Grove - HCHO Sensor

14. Grove - Digital Light Sensor 28. Grove - Collision_Sensor

Custom I2C add-ons can also be integrated by using the Grove - Screw Terminal

making-sense.eu

Page 39 of 43

Fig 23 The Seeed Studio Grove Connector Screw Terminal

Pin Port Function

1 GND Ground

2 VCC VCC 3.3V 500mA MAX

3 SDA I2C (by software: 1-WIRE / WS2812)

4 SCL I2C (by software: 1-WIRE / WS2812)

	

More examples and documentation will come on the upcoming months when the Smart
Citizen Kit 1.5 Firmware will be ready.

idea EXAMPLE

Adding a Grove Analog Sensor on the SCK 1.5

The Smart Citizen Kit 1.5 firmware supports a single Groover - I2C ADC in a plug-n-play
fashion. This means that once the add-on is detected the firmware will automatically start
posting the sensor values in mV to the Smart Citizen Platform together with the other sensors.

making-sense.eu

Page 40 of 43

Fig 24 The Smart Citizen Kit 1.5 with the Grove ADC module and the Grobe Microphone module

Fig 25 The Smart Citizen Kit 1.5 with an analog sensor add-on on Smart Citizen

making-sense.eu

Page 41 of 43

Fig 26 The Smart Citizen Kit 1.5 with multiple Grove modules.

The small display can be used to provide direct feedback to users.

making-sense.eu

Page 42 of 43

CONCLUSIONS
This deliverable sheds light on the vast amount of possibilities

offered by the Smart Citizen tools as key enablers of participatory
sensing pilots and experiments.

By providing meaningful examples of novel appropriations and uses we seek to inspire
communities to conduct their own experiments and, hopefully, even their own custom tools.
The cases here described will be complemented with new informations to be published within
the next few months along with the public release of the Smart Citizen Kit 1.5.

making-sense.eu

